Skip to main content

Building Your First Agent

Let's build a real agent that completes tasks autonomously. We'll start simple and progressively add capabilities.

Agent 1: Research Assistant (No Code)

Goal: Agent that researches a topic and creates a summary document

Platform: Claude or ChatGPT (free tier works)

Step 1: Define the Task

Instead of asking questions, give a complete task:

Research the top 5 AI code editors in 2026. For each one:
- Key features
- Pricing
- Best use case
- Market position

Create a comparison document with recommendations.

Step 2: Let It Run

The agent will:

  1. Search for information
  2. Analyze findings
  3. Structure the document
  4. Create the output

Step 3: Review and Refine

Provide feedback:

Good start. Please add:
- User reviews/ratings
- Integration capabilities
- Update with pricing I can verify

You just built your first agent! It's autonomous, multi-step, and completes the full task.

Agent 2: Custom Skill Agent

Goal: Create a reusable research skill

Platform: skills.sh + Claude/ChatGPT

Step 1: Create the Skill

Go to skills.sh and create:

# Deep Tech Research Skill

## What you do
Comprehensive technology research with competitive analysis

## Instructions
1. Search for the technology/tool
2. Find official sources first (documentation, company site)
3. Check reviews on Reddit, HN, Twitter
4. Analyze competitors
5. Identify strengths and weaknesses
6. Create structured comparison

## Output Format
# [Technology Name]

## Overview
[2-3 sentence summary]

## Key Features
- [Feature 1]
- [Feature 2]

## Competitors
| Name | Strength | Weakness |

## Recommendation
[Who should use this and why]

## Sources
[Links to all sources]

Step 2: Use the Skill

In Claude or ChatGPT, reference your skill:

Use the Deep Tech Research skill to analyze Cursor IDE

Step 3: Iterate

Refine the skill based on results. Skills improve over time.

Agent 3: Automated Workflow (Low Code)

Goal: Agent that monitors competitors daily

Platform: Make.com or Zapier Central

Architecture

Schedule (daily 9am)

Web Scraping (competitor sites)

Claude Analysis (what changed?)

Filter (only if significant changes)

Slack Alert (notify team)

Step 1: Set Up Trigger

Make.com:

  1. New scenario
  2. Schedule trigger: Daily 9am

Zapier Central:

  1. Natural language: "Every day at 9am..."

Step 2: Add Web Monitoring

Make.com:

  • HTTP module → Get competitor homepage
  • Repeat for each competitor

Zapier:

  • "Check these URLs: [list]"

Step 3: Add AI Analysis

Make.com:

  • Claude/ChatGPT API module
  • Prompt: "Analyze these pages for changes in: pricing, features, messaging"

Zapier:

  • "Use AI to find changes"

Step 4: Alert on Changes

Make.com:

  • Filter: If changes detected
  • Slack module: Post message

Zapier:

  • "If changes found, post to #competitive-intel"

You now have an autonomous monitoring agent!

Agent 4: Development Agent (Technical)

Goal: Agent that fixes bugs autonomously

Platform: Cursor or Claude Code

Using Cursor

  1. Open your project in Cursor

  2. Describe the bug:

Agent mode: There's a bug where users can submit empty forms.
Fix the validation and add tests.
  1. Cursor Agent will:

    • Read relevant files
    • Identify the issue
    • Write the fix across multiple files
    • Add tests
    • Verify it works
  2. Review the changes:

    • Check the diff
    • Run tests
    • Commit if good

Using Claude Code (CLI)

# Install
brew install claude-code # or npm install -g claude-code

# Navigate to project
cd my-project

# Give it a task
claude-code "Add rate limiting to the API endpoints"

Claude Code will:

  • Analyze your codebase
  • Implement rate limiting
  • Add tests
  • Update documentation

Agent 5: Custom Agent (Code)

Goal: Build a custom agent from scratch

Platform: Python + Claude API

Simple Agent Framework

import anthropic
import os

class ResearchAgent:
def __init__(self):
self.client = anthropic.Anthropic(
api_key=os.environ.get("ANTHROPIC_API_KEY")
)

def research_topic(self, topic):
"""Autonomous research agent"""

# Agent loop
messages = [{
"role": "user",
"content": f"""Research {topic} thoroughly.

Steps:
1. Search for official information
2. Find user reviews
3. Compare alternatives
4. Create summary document

Use tools as needed. Complete the full task."""
}]

# Agent runs until task complete
while True:
response = self.client.messages.create(
model="claude-sonnet-4-5-20250929",
max_tokens=4096,
messages=messages,
tools=[
{
"name": "web_search",
"description": "Search the web",
"input_schema": {
"type": "object",
"properties": {
"query": {"type": "string"}
}
}
},
{
"name": "create_document",
"description": "Create markdown document",
"input_schema": {
"type": "object",
"properties": {
"content": {"type": "string"}
}
}
}
]
)

# Check if agent is done
if response.stop_reason == "end_turn":
return response.content

# Execute tool calls
if response.stop_reason == "tool_use":
for block in response.content:
if block.type == "tool_use":
result = self._execute_tool(
block.name,
block.input
)
messages.append({
"role": "assistant",
"content": response.content
})
messages.append({
"role": "user",
"content": [{
"type": "tool_result",
"tool_use_id": block.id,
"content": result
}]
})

def _execute_tool(self, tool_name, params):
"""Execute tool and return result"""
if tool_name == "web_search":
return self._web_search(params["query"])
elif tool_name == "create_document":
return self._create_doc(params["content"])

def _web_search(self, query):
# Implement web search
# Could use Tavily, SerpAPI, etc.
pass

def _create_doc(self, content):
# Save document
with open("research.md", "w") as f:
f.write(content)
return "Document created"

# Use the agent
agent = ResearchAgent()
result = agent.research_topic("AI code editors 2026")
print(result)

Run It

export ANTHROPIC_API_KEY=your_key
python research_agent.py

The agent autonomously completes the research task!

Common Patterns

Pattern 1: Approval Gates

For agents that take actions, add human approval:

def needs_approval(action):
"""Human approval for critical actions"""
print(f"Agent wants to: {action}")
response = input("Approve? (y/n): ")
return response.lower() == 'y'

Pattern 2: Error Recovery

Agents should retry on failure:

def safe_tool_call(tool, params, max_retries=3):
for attempt in range(max_retries):
try:
return tool(params)
except Exception as e:
if attempt == max_retries - 1:
return f"Failed after {max_retries} attempts: {e}"
time.sleep(2 ** attempt) # Exponential backoff

Pattern 3: Cost Limits

Prevent runaway costs:

class Agent:
def __init__(self, max_cost_usd=1.0):
self.max_cost = max_cost_usd
self.current_cost = 0

def check_budget(self, estimated_cost):
if self.current_cost + estimated_cost > self.max_cost:
raise BudgetExceeded("Cost limit reached")
self.current_cost += estimated_cost

Next Steps

Level up your agents:

  1. Agent Patterns - Learn advanced architectures
  2. Multi-Agent Systems - Coordinate multiple agents
  3. MCP Integration - Connect to tools and data
  4. Agent Safety - Guardrails and sandboxing

Resources:

Community:

Start with Agent 1 today. By Agent 5, you'll be building production systems!